Antisymmetry, pseudospectral methods, and conservative PDEs
نویسندگان
چکیده
“Dual composition”, a new method of constructing energy-preserving discretizations of conservative PDEs, is introduced. It extends the summation-by-parts approach to arbitrary differential operators and conserved quantities. Links to pseudospectral, Galerkin, antialiasing, and Hamiltonian methods are discussed.
منابع مشابه
Numerical Solution of the Time-Dependent Schrödinger Equation in Ultrafast Laser Dynamics∗
The numerical approximation of the solution of the time-dependent Schrödinger equation arising in ultrafast laser dynamics is discussed. The linear Schrödinger equation is reduced to a computationally tractable, lower dimensional system of nonlinear partial differential equations by the multi-configuration time-dependent Hartree-Fock method. This method serves to approximate the original wave f...
متن کاملComparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations
This paper explores the utility, tests the accuracy and examines the limitation of the discrete singular convolution (DSC) algorithm for solving partial differential equations (PDEs). The standard Fourier pseudospectral (FPS) method is also implemented for a detailed comparison so that the performance of the DSC algorithm can be better evaluated. Three twodimensional PDEs of different nature, t...
متن کاملInterpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature
We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...
متن کاملComparisons between pseudospectral and radial basis function derivative approximations
Fourier-based pseudospectral (PS) methods have been used since the 1970s for obtaining spectrally accurate solutions to PDEs in periodic geometries. Radial basis functions (RBFs) were introduced about the same time for interpolation on scattered nodes in irregular geometries. As was later recognized, they can also be used for accurate numerical solution of PDEs. Although the main strength of RB...
متن کاملSpectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs
We examine the merits of using prolate spheroidal wave functions (PSWFs) as basis functions when solving hyperbolic PDEs using pseudospectral methods. The relevant approximation theory is reviewed and some new approximation results in Sobolev spaces are established. An optimal choice of the band-limit parameter for PSWFs is derived for single-mode functions. Our conclusion is that one might gai...
متن کامل